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Abstract. In this paper we develop the theory of high-order radiation boundary
conditions for wave propagation problems. In particular, we study the convergence of
sequences of time-local approximate conditions to the exact boundary condition, and
subsequently estimate the error in the solutions obtained using these approximations.
We show that for finite times the Padé approximants proposed by Engquist and Majda
lead to exponential convergence if the solution is smooth, but that good long-time error
estimates cannot hold for spatially local conditions. Applications in fluid dynamics are
also discussed.

Key words. Radiation boundary conditions, integral equations, hyperbolic sys-
temns.

1. Introduction. Problems in wave propagation are generally posed
on unbounded domains. Their numerical solution thus requires the intro-
duction of an artificial boundary and the imposition of radiation boundary
conditions there. Scores of authors have considered this problem, and a
number of reasonably accurate procedures have been discovered. Nonethe-
less, in order to obtain some specified accuracy, it is still generally the
practice to enlarge the domain - a process which may be inefficient and
difficult to automate.

In this work we pursue a different approach - namely to fix the artifi-
cial boundary and to improve the accuracy by increasing the order of the
approximate radiation conditions. From a practical point of view, we see
that these high-order conditions can be easily implemented via the intro-
duction of auxiliary functions on the boundary. From a theoretical point of
view, estimates of convergence for fixed boundaries and increasing order are
needed. We develop such estimates for the wave equation in a half-space
by first finding a convenient representation of the exact radiation condi-
tion, which turns out to involve convolution in time with a Bessel kernel.
Approximate conditions are similarly represented in terms of convolutions,
and the error then depends on the difference between the exact and ap-
proximate kernels. Using approximations to an integral representation of
the exact kernel, convergent time-local approximate conditions are derived.
These include the spatially local Padé conditions proposed by Engquist and
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Majda [7,8). For long time computations, on the other hand, it is shown
that spatially nonlocal conditions are generally needed.

Generalizations to other problems are presented, including the lin-
earized Euler equations as well as the wave equation with circular and
spherical boundaries. Throughout we indicate some interesting theoretical
and practical issues which remain unresolved.

2. The Wave Equation in a Half-Space.

2.1. Exact Boundary Conditions. We consider:

(2.1) U =cV3u+f, t>0, z=(z1,y) €(0,0)x R*%,

(2.2) u(z,0) = g(z), Bou(0,y,t) = go(w: ).

We suppose, for some L,§ > 0,that f =g=0andc=1forz, > L - 6.
Let i(z,, k, 8) be the Fourier-Laplace transform of u with respect to y and
t. Then it is easily shown (e.g. [11]) that 4 satisfies the exact boundary
condition at z, = L:

(2.3) o, + (8% + |k?)

(The branch of (s® + |k|2)1/2 is chosen so that it is analytic in the right
half s-plane and has positive real part.) This exact condition is expressed
in terms of u in the following way: Let F denote Fourier transformation
with respect to y and F~! be its inverse. Let:

(2.4) K(t) = !}tﬁ)- = %-/:11 V1 — w? cos witdw.

As shown in the appendix,

(2.5) K(s)= (52 +1)"° - .
Using standard formulas from Laplace transform theory (e.g. [5]) we finally
have the exact condition at z; = L:

6u Ju

(2.6) 3_::1- + = +F1 (|k|2K:(|k|t) * (Fu(zy, -,t))) =0.

(Here, * denotes convolution.)

2.2. Approximate Conditions. Although it may be possible to di-
rectly implement (2.6) using FFT’s and fast convolutions, most work has
been focussed on the development of approximate conditions involving dif-
ferential operators in time and, usually, space. Local approximations in
time correspond to rational approximations in s to K:

2.7) (s*+ |k3)* = s = |k] ((z2 +1)2 - z) ~ |k|R(z), z = s/]k|.



We take R to be a rational function of degree (p,p + 1), that is,

(2.8) R(z) = % deg(P)=p, deg(Q)=p+1.

The approximate condition may be directly localized in time by apply-
ing the operator F~1Q(|k|~18/8t)F. However, this leads to differential
operators of high order as p is increased. To develop a more convenient
framework for implementation, we make the additional assumption that
the roots of @ are distinct. Then, R has a partial fraction expansion:

p+l s
(2.9) R(2) = I,
Let
(2.10) By = 2l
z—p;

and let %(zy, |k|,t) be the Fourier transform of v with respect to y. Here,
v denotes the approximation to u computed on the bounded domain. We
finally have the approximate boundary condition:

% p+l

(2.11) ﬁ + ZE =0,

a =
(2.12) (a - |k|pj) hj = aj[klz‘!'}.

The advantage of this formulationis clear: the order is increased simply
by increasing the number of terms in the sum. From the point of view of
code development, this is very convenient.

We note that the conditions above are still nonlocal in space. For
periodic problems this is no obstacle, a3 FFT’s can be used. However, the
nonlocality does preclude their use at more general boundaries. A glance
at (2.12) reveals the condition for spatial locality: the poles, p;, of R(z)
must come in conjugate, imaginary pairs, or be 0 and R itself must be an
odd function of z. We may then assume that R has an expansion of the
form:

(2.13) R(z) = z’: ik

T4 37"
=1 24+ 6 J
This leads to the local implementation:

a q
(2.14) -@—+—3+Z¢,_o



a? v
(2'15) (55 —ﬂ?vfan) ¢.i =7 vf&na

We would like to impose such a locality condition on R(z), but it will be
shown later that such approximations cannot lead to good error estimates
uniformly in time or in tangential wave number.

In what follows, we will view

(2.16) G(t) = L~ R(s),

as an approximation to K(t). For reference we note that (2.9) corresponds
to:

p+1
(2.17) G(t) =Y _ ajer",
§j=1
while (2.13) implies:
g
(2.18) G(t) = Z 7;j cos B;t.
i=1

2.3. Error Estimates. We have seen that it is relatively straightfor-
ward to implement conditions of increasing order, at least in the half-space
(or periodic) case. This leads to the question of convergence. Naturally,
error estimates for approximate boundary conditions have been considered
(e.g. [2],(8], [13],[20]). However, none of these consider convergence for a
fixed problem in a fixed domain as the order of the conditions is increased.

Let e = u — v be the error. Then e satisfies:

(2.19) en=c*V2, t>0, z=(z,9) €(0, L) x R*1 =1,
(2.20) e(z,0) =0, Boe(0,y,t)=0,

% 0 .., o _
(2.21) 5o+ 3 + PGk & = [KPE(IkIE) + 5.

The error kernel is given by:

(2.22) £(r) = G(r) ﬁii)

Estimates of e naturally require both the stability and consistency of
the approximate boundary conditions. Stability is a consequence of the
uniform Lopatinski condition:

(2.23) s+ (8% + [k[*)*2 + |k|R(z) £ 0,



for
(2.24) R(s) >0, ke R*Y, (s,k)#£(0,0).
Then we have (e.g. Sakamoto [22, Ch. 3]):

T T
225) [ et < € [ 1B, Olfganenyt
where,
(2.26) Ew = FYk[PE(JkI) + (Fuw).

The error may now be bounded in terms of the error in the approximation,
G, to K. In particular, suppose, for some g > 0and T > 1:

(2.27) €]z 10,y < €T*.

Then, by Parseval’s identity and standard estimates for convolutions,
T T

[ BT gt = [ [ R+ (2 b )00k
T

L R PR sy

T
2T /o (L, - ), (gmesy -

Substituting this into (2.25) we finally obtain:

IA

(2.28)

IA

T T
(2.29) /0 lle(-, )|, gt < €2T#C? /0 [u(Z, s ), (rmm1) -

This error estimate is best, both from the point of view of long time
behavior and from the point of view of smoothness required of u, if x = 0.
We note that such an estimate requires bounds on ||£]|z,{(0,00))- This can-
not be attained for local conditions, as we have seen that they involve
convolution kernels which are combinations of cos8;t (2.18), and, hence,
are not elements of L;[(0,00)]. Time uniform estimates could be obtained
using spatially nonlocal conditions, however. Some discussion of long-time
behavior of spatially nonlocal boundary conditions appears in [6,17]. In
[15] we construct conditions using Laguerre and exponential expansions.
Although the conditions so derived do lead to estimates with u = 0, con-
vergence as the order of approximation was increased was slow at best.
Below we introduce a new nonlocal approximation based on the direct ap-
proximation to an integral representation for K(t).

Our point of view leads to an interesting, and to our knowledge un-
solved, problem in approximation theory. Define 7, to be the set of all
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real functions in L, [(0, 00)) whose Laplace transform is a rational function
of degree (p,p+ 1). More directly, a function in H, takes the form:

P1 Pa
(2.30)  G(t) =) Mj(t)e™ " cos (Bjt +¢5) + ) _ Nj(t)e™™",

i=1 j=1

where ; and x; are positive and M;(t) and Nj(t) are polynomials. Here
p is given by:

P P3
(2.31) p+1=2 (deg(M;) +1)+ ) (deg(N;) +1).
j=1 =1

Problem A: For fixed p characterize and find an algorithm to compute the
best L;[(0, 00)] approximation, G € Hp, to K or to other kernels. Estimate
the behavior of the error as p is increased.

The solution of this problem would provide us with optimal approxi-
mations to convolutions via the solution of differential equations. We note
that for bounded intervals and sums excluding trigonometric terms (i.e.
p1 = 0), a theory does exist. (See Braess [3, Ch. 6].)

2.4. Methods Derived via Quadrature. In general, approximate
boundary conditions have been derived either by direct approximation to
the symbol (e.g. [24]) or through the use of far-field asymptotics (e.g.
[2,16]). Here we show how a class of convergent local (in space and time)
approximate conditions may be derived by approximating the integral rep-
resentation of the exact kernel:

(2.32) Jl(t) / v 1— w?cos widw.

The simplest example is the trapezoid rule:

Jl(t) 11— 25
(2.33) : (q T 1)1‘_ Z — wicoswit, wj=-1+ 31

After Laplace transformation we find that:

(2.34) R(z) = —2 ivl_w’z

- 2 2 "
(q + 1)1 j=1 2 +wJ

(Of course, in unplementatxons of the condition the number of terms in the
sum can be halved using the evenness in w; of the integrand.)

The well-posedness of these approximations follows directly from a
check on the Lopatinski condition. (It also follows from general results
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for local conditions in [12,23].) In order to derive error estimates, however,
we must explicitly bound the stability constant, C in (2.29), as a function
of g. Using Parseval’s relation (e.g. [21]) we have:

(s + &)1/ + [k
2.35) C < (T su .
(239) CSlT) B g | 55 (3 % TR % RIRGSTTRD
Here v > 0 is fixed and co(T) depends on 4 but is independent of the
boundary condition. Dividing through by |k| we see that our problem is
reduced to the estimation of:

(22+1)1/2+1
2+ (22 +1)1/3 4+ R(2)’

(2-36) sup |Q(z2)], Q(z)=
R(z)20

Noting the form of R(z), and recalling the choice of branch for the roots,
we see that the Q is bounded as z — o independent of q. Therefore, by
the maximum principle, we can restrict attention to the imaginary axis,
z = in. In this case the poles of R are located on the imaginary axis with
|nl < 1 and |RY is strictly decreasing in |n| for || > 1. Therefore, for || > 1
we have:

1+v/P -1 1
(2.37) O < Ve = T- R S TSTRET

Now

2

g 1
(q+1)1rj§ \/l_w;.

(2.38) 1- |RGE)| =1~

To bound this we note:

1
dw
2.39 T= —_—.
(2:39) [ =
For q = 2p, even, we have:

(2.40) 22’: / “ duw
. > —.
wi—-3f(¢g+1) V 1—w?

j=1
Generally we have:

t dw 2 1
(2.41) f - > — ,
wi-3/(s+1) V1—w? ¢+ \/l - w?

andforj=1,q9> 2;

vl dy >\/i—\/s/z+ 2 1
-1 V1-w? vVe+Tl g+l /1-w?

(2.42)




Hence, for some constant, ¢, independent of ¢:

(2.43) -i_—ll_R(Zﬂ < ¢/a.

For ¢ =2p+1, odd,

P+l aw; d
2.44 r=2 f
(244 Z; wi-a/(g+1) VI—

and (2.43) is similarly established. For |n| < 1 we distinguish two cases,
|n| < |wi| and |9} > |wy|. For the former we have:

2
(2.45) 10| € —=— =1 <oV,

while for the latter it is easily shown that |Q| is maximized at |g| =
which we have estimated above. Our final estimate is:

(2.46) C < C(T)Va,

with € independent of g.

To derive error estimates we first estimate the error in the quadrature
formula for fixed . Although the integrand doesn’t possess a bounded
derivative, its derivative is integrable. Therefore, employing the Peano
Kernel representation of the error:

Ji(t) 2 \/—— c1 + 2¢5t
2.47 - 1-w? ) < 222
(2.47) 1= T 1)1-72::1 w? cos wjt| < .

Here, the c; are constants independent of ¢t and g. Then we have:

/ |.h(t) (q — 1)1 Z J1- w} cos wjt|dt

(2.48) < E(C]_T + CgTz).

”&np(t)“L,((O,T))

Substituting this into (2.29) and using (2.46) we finally obtain, for some
&T) independent of g:

T T‘ T
a9) [ et et < [ I Ol
0 q9 Jo

We have shown, then, that the trapezoid rule produces a one-half order
approximation to the true solution in the sense that the error decays at least
as the square root of the reciprocal of the number of terms in the boundary
condition.
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A more accurate formula is obtained through the application of the
Gaussian quadrature rule associated with the weight v1 — w?:

q . .
(2.50) 5it) ~ —:l--X:s'm2 J‘Kl coswjt, wj = cos L

t e+157 g+ g+1’
1 < (sin? ﬁ;)z
(2.51) R(z) = QH;S:"; Trul

This approximation is discussed in [15]. Remarkably, it is shown to
be equivalent to the stable Padé approximants introduced by Engquist and
Majda (7,8]. The stability of this approximation is well-known. To estimate
the stability constant, we repeat the analysis given above for the trapezoid
approximation. As in that case, we must estimate (1 — {R(#)])~!. We find:

) -1
1 . sin? 4%
. 1—|RE))"t = - g+l = .
(252)  (1-IRG)) (1 ST oo

We also have:

1 1
(2.53) = —<c¢(g+1).
Vi-wi singm

Hence we conclude:
(2.54) C < &(T),

with € independent of gq.
Using the error formula for the quadrature rule we find [15):

(T/2)2q+1

(2.55) l|€gauss(t)llzsc0,7) < e+

From this, (2.29) and (2.54) we prove:

T 2 4q+2 4T
L2 g (T/2)* / YL
(2.56) _/(; lle(s )l [t < e+ D/ l[w(Ly -, )|z, s em2182-

Here we see exponential convergence in ¢ for smooth w, as with spec-
tral approximations to the solutions of differential equations, so that the
method might reasonably be called infinite order.

Clearly, these estimates are nonuniform in T, as must be the case for
spatially local boundary conditions. (See (2.18).) In [14,15] we presented a
number of methods for approximating the convolution kernel by decaying
functions, including exponential interpolation, exponential least squares
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and approximations by Laguerre functions. None of these seemed entirely
satisfactory: the interpolation could not be easily extended to high order,
while the other approximations converged very slowly (if at all) in L; (0, o0).
(We note that the proposed conditions have not yet been tested.)

In order to use quadrature to construct long-time approximations we
must derive an integral representation of J;(t)/t involving an integrand
which decays in t. This may be accomplished by treating (2.4) as a complex
integral and deforming the contour. For example, let:

(2.57) z=w+i(l-v’)P(w), P>0, we[-1,1).
Then:

‘—’-%(Q = %éR (L(l - zz)"/ze"“dz)
(2.58) = = / ' VI D(w, t)duw,

(2.59)  D(w,t) = (fi(w)coswt + fa(w) sin wt)e~(=w )P},

(2.60) fi(w) = g(w) + (2wP(w) — (1 — w*) P'(w))h(w),
(261)  fi(w) = (2wP(w) - (1 - w?)P'(w))g(u) - h(w),
(2.62) g(w) = G(w) + (1 — v?)P*(w)/G(w),

(2.63) G(w) = \/1+ IF (1 + w)PPAw)y/1 + 1+ (1 - w2 P(w),

(2.64) h(w) = (1 — w)P(w)H(w) — (1 + w)P(w)/H(w),

\/1 +1+(1+ w)’P’(w)
\/1 + VIT (=P (w)

Since the function D(w,t) is smooth on the interval of integration, it
is still reasonable to use the Gaussian quadrature scheme for the weight

V1 — w?. This yields:

(2.65) H(w)

(2.66) 5it) Z,: 37 p(w;, 1)
’ t 2(q+ g+1 777
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(2.67) R(z 2(q r5p) Z ri(z),

oy sin? EE (e + (1 - wh)P(wy)) + fa(wyYuy)
(268) rs() = (2 + (1 - w])P(w)))? + 7 ’

We have not yet tested or analyzed these schemes. Finite time error
estimates should be obtainable using the error formula for the quadrature
rule, but the hope is that time independent estimates will hold.

Problem B: Find a function or class of functions, P(w), such that the
resulting scheme leads to well-posed problems and kernels which converge
to K(t) in L, {(0, 00)].

3. Generalizations.

3.1. Anisotropic Problems. The approximations discussed above
are also applicable to problems with anisotropic wave propagation. As a
first example, consider the convective wave equation with subsonic convec-
tion:

2
8 3 2

. g L > L.
(3.1) (8t+le:w'821) u=V, z,>L
We normalize so that 3 ,w? = 1, 0 < M < 1. To formulate the exact
boundary condition, we seek solutions of the form:
(3.2) 4= A,
leading to the quadratic equation,

2
(3.3) <s +iM Y wiki + Mwl}\) =A% — |k
>1

The relevant solution, that is the one with negative real part for R(s)
sufficiently large, is given by:

A=
(34) —(1 - M%)~ (1 - Mwy)s + (( + (1 - M) i) - 5)),
where

(3.5) F=s+iM)y_ wik.
i>1
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To conveniently express approximations to this condition, we define the
tangential material derivative, Dian /D, by

D, 7] T
(3.6) 1;" = 2 + Ui Vaan Doas =M(ws ws ... wn),
and let D/Dt denote the standard material derivative with respect to the
full velocity U = M (w1 ... wy)T. The exact condition is then given by:

(3.7) (1+Mw1) 2 +@+;(Um k) + (1 + Mown) A + 5,

Ji(v1 - M2wilklt 1“M2“’1|Ht —i(Usen-k
3.8 Ak, t v D),
(38) (nt) = = = arouTlelt)

Using the rational approximation /1 — M3u3|k|R(z), with z = §/(/1 — M3 |k|),
we obtain, in analogy with (2.11-2.12),

87 LAl
(3.9) (1+Mw1)a" + 57 + il K7+ YRy =0,
j=1

7] | SE— -
(3.10) (E + ‘i(Ug“ . k) —4/1- Mzwglklpj) h,' = aj|k|2(1 + Mul)z':.

The approximate condition is local in space under the same conditions for
locality in the isotropic case, that is (2.13). Then we have:

(3.11) 2?_+23+2¢J_0

D?nn 2 22 Dianv
(3.12) -(1-M*)BIVE,, ) 6 =-(1+ Muy )y Vi = T

We are confident that issues of consistency and convergence for these
approximations could be handled as in the isotropic case, but we have not
yet carried out the details. Below we see that the same operators appear
in boundary conditions for the linearized compressible Euler and Navier-
Stokes systems.

3.2. Applications to Fluid Dynamics. We now consider the com-
pressible Euler equations linearized about a uniform flow in two space di-
mensions:

3.13 2L L 22 oy,
(3.13) ot T+
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Dy 8p
. =0,
(3.14) ot oy
Dp du v
(3.15) Drtas T =Y

where D/Dt = 8/8t + Mw;8/8z + Mw,d/dy, wl +w] =1,0< M < 1.
We suppose w, > 0 and put artificial boundaries at ¢ = +L; that is inflow
at —L and outflow at L.

To compute exact conditions we Laplace transform in ¢, Fourier trans-
form in y, and rewrite the system in the form:

Muw,i ik

F) i 1-M3u3 _I—M’w’ - M’w i

(316)=— | ¥ | = 0 —— — g 3

z P __ 3 skMu, Mu, P
1—Al’m.5 -M3wd -Miuw?

Here, § = s + ikMw,. Eigenvalues and left eigenvectors of the coefficient
matrix are given by:

(3.17) A= %ﬁ%’, T=( -ikMw, - A),
A‘ - Mw,i T - . "

(3-18) Ag = —m, I = (3 - ‘l.kaz A),

(3.19) Az = —ML , & =(ikMw, § ik),

where

(3.20) A= (3 +(1 - M22)E3)1/3,

Noting that R(;) > 0 and R(X3,3) < 0 for R(s) > 0 we have, setting
w=(u v p)T:

(3.21) Bw=0, z=L; Bw=Bw=0, z=-L.
The exact outflow boundary condition is then given by:
d
(3.22) ( + szwy) (8- p) — ikMw,7 — (1 — M2w3)k2A+5=0.

The exact inflow conditions are given by:

(3.23) < 9 +szwy) (B +P) — tkMw.5 + (1 - M?w)k?Axp=0,
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(3.24) (% + ika,,) T+ tkMw i +ikp=0.

Here,

(3.25) A(k,t) = Tyl - MAZR) instone,
) ’ V1 - M3wikt

Using the rational approximation /1 — M3w3|k|R(z), for z = §/(/1 — M3wi|k|),

equations (3.22- 3.23) become, in analogy with (3.9-3.10),

P+l
3.26 i+'iJcMul i—p)—itkMw,5 — k;=0,
at vy ¢l
j=1

(3.27) ( 9 ikMwy — /1 - M?w?lklp,) a;k*(1 — M3wi)p,

at outflow and at inflow,

P+l
(3.28) (% +ikay) (ﬁ+ﬁ)—ika=i+Z§j =0,
j=1

(3.29) ( 9 +ikMwy —/1- M2w3|k|p,-) g; = a;k*(1— M*wd)p.

The approximate conditions are local in space under the same con-
ditions for locality in the scalar case, that is (2.13). In particular, if we
use the Engquist-Majda-Padé-Gaussian approximation, (2.51), we have, at
outflow:

D
(3.30) fan (u p) - Mw,—— Zgﬁ, =0,
Dtan 22 il
(Dt+ 1 - M?w3cos +13y ¢ =
1 .2 J% 2,2,9°P
(3.31) q+lsm ot 1(1 M w,)ayz.

The inflow conditions become:

(3.32)

év g
) — Mw,;y—+’z=;¢,- =0,
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(D—I;:i+\/1—M’wgcos Jx i) Y =

g+1dy
P T 2 2,9°D
(3.33) q+131n q+1(1 Mw,)ayz.
Dianv du &p
. s— + — = 0.
(3.34) i+ Mwego + 5

These conditions have been implemented by Goodrich [9] for channel
flows, and shown to be very accurate even for moderate q. Note that
(3.34) implies zero vorticity at inflow and, for the linearized problem, it is
exact. Also, we have used an alternative representation of the approximate
conditions with the property that the auxiliary functions are computed by
solving first order equations.

A similar construction has been carried out for the linearized, isen-
tropic, compressible Navier-Stokes equations in the low Mach number limit
by the author and Lorenz [18]. Here, we require two boundary conditions
at outflow and three at inflow. The conditions (3.22), (3.23) and (3.34)
remain the same to leading order. The additional condition at outflow is

Dv dp
.35 —+—==0
(3.35) ot T =Y
and at inflow is given by:
du dp
3. —+ —=0.
(3.36) % " 3z

We note that here we generally expect that long time computations, as mea-
sured on the time scale of the sound waves, will be of interest. Therefore,
nonlocal approximations may be efficient. As part of his doctoral disserta-
tion, L. Xu is locking into such approximations and their applications in
acoustics. Some of his results will appear in {19].

3.3. Corner Conditions. The boundary conditions, as discussed so
far, only apply to half-space or periodic problems. To generalize their
applicability, one must understand how to treat the case of an artificial
boundary intersecting another part of the boundary at a corner. Collino
[4] has solved this problem for the important special case of the isotropic
wave equation, two artificial boundaries intersecting at a right angle, and
spatially local boundary conditions. (We note that our formulation of the
exact conditions and spatially nonlocal approximations is not valid in this
case.)

As a first attempt to generalize Collino’s results, we have considered
the convective wave equation in a rectangular domain with all boundaries
artificial and the spatially local boundary conditions (3.11-3.12). Collino’s
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construction does not directly apply, as it is based on special exact solu-
tions of the wave equation in a corner. We have, instead, looked at power
series expansions in the corner. These do lead to compatibility conditions
which can be used to relate the auxiliary functions associated with distinct
boundaries. However, it seems that the expansion must be carried out to
order greater than 4q to produce the ¢ required conditions. We have tried
to do this symbolically, but so far have succeeded only for ¢ < 2.

Problem C: Derive corner compatibility relations for local approximate
boundary conditions for anisotropic systems.

‘We also note that the theory of exact conditions and nonlocal approx-
imations is still undeveloped.

Problem D: Characterige the exact boundary condition for the wave equa-
tion and convective wave equation with a rectangle or rectangular par-
allelipiped as artificial boundary. Construct convergent temporally local
approximate conditions.

Another case of practical importance should be analyzed is the inter-
section of an artificial boundary with a physical boundary, such as a solid
wall. As a first example consider the convective wave equation in two
space dimensions with convection in the z direction and walls at y = 0 and
y=H:

2
(3.37) (% + M%) u= V3, (z,y)€ (0,00) x (0, H),

ou du
(3.38) ao-é;—ﬁouzo, y=0; al-a—i’- +pfiu=0, y=H.
We can expand the solution:

(3.39) u= Z 4Yi(y), Yi(y) = Arcosky + Bisinkyy,
{

where the eigenvalues, k;, are determined by the boundary conditions.
Then, i; satisfies (3.7), and for the approximate local boundary condition
(3.11)-(3.12) we have:

(3.40) ;i =Y $i¥i(y)-
i

Since the eigenfunctions, Y3, satisfy (3.38) so would the ¢;, under the as-
sumption that the expansion is sufficiently regular. That is:

0¢;

39;
(3.41) aogyi—ﬁocﬁ,-:(l, y=0; al—a;’+ﬁ1¢5=0, y=H.
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We should emphasize that this is generally not a true solution of the com-
patibility problem, but simply an approximation which we have used.

This approximation can be extended to the linearized, compressible
Euler system, again with the physical assumption that the base flow is
parallel to the walls, y = 0, H. The physical boundary condition at this
characteristic boundary is:

(3.42) v=0,

while a second relation, implied by the y-momentum equation is:
dp

(3.43) 3y =

Using these we see that the solution can be expanded in the form:
u= Zﬂ; cosixy/H, v=3Y 9sinlry/H,
1

(3.44) p=> Picosiry/H.

To relate these expansions to expansions of the auxiliary variables, we note
that:

) 1— 4
(3.45) cos q"% + cos (q—+q—+—1—'7l£ =0
Hence, equations (3.31) and (3.33) imply:
(3.46) b5+ Pg41-5 = Z ®; coslny/H,
‘ ]
(3.47) Vi + Ygp1-5 = Z ¥ coslxy/H,
i
with boundary conditions:
8¢; | 9¢g41-5 8% | OYg41-j
.48 £ R bl bt . L 4 14T 0, y=0,H.
(3.48) By + ay 0, By + 3y y H

These are the corner conditions used by Goodrich in [9].

3.4. Smooth Boundaries. Given the theoretical and practical dif-
ficulties of high-order boundary conditions at artificial boundaries with
corners, smooth artificial boundaries are an attractive alternative. Repre-
sentations of the exact boundary condition for the wave equation at circular
and spherical artificial boundaries are easily obtained. (See [17].)

Using polar coordinates in two dimensions, we place the artificial bound-
ary at r = R and expand the solution, u, in a Fourier series in 6:

(3.49) u(r,6,t) =Y @et.
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The exact boundary condition is then given by:

84; 84, 1 _ 1 o
(3.50) —37+-é?+ 2Ruz+ RzAx(t/R)*u; =0,
- _ Kj(z) 1
(3.51) A2) =~z (Kz(z) +1+ %)

(Here, K;(z) is the modified Bessel function [1].)

We have not, as yet, found a closed form expression for A;. We note
that conditions based on far-field expansions (e.g. [2,16]) correspond to
large z expansions of A;. By the results of [17], long time accuracy is
difficult to achieve using time-local conditions, as Ag decays slowly as ¢ —
oo.

In three dimensions, on the other hand, the exact condition takes a
much simpler form. Here we use spherical coordinates and take r = R
as our artificial boundary. The solution, u, is now expanded in spherical
harmonics:

(3.52) u(r,0,6,t) = 3 _ m¥i(6,4),
1

where

(3'53) vfphexeY‘ = _l(l + l)Y‘

In analogy with the two-dimensional case, the exact condition is related
to the inverse Laplace transform of the logarithmic derivative of spherical
Bessel functions. In particular we have:

ou; o814 1

1
+ —=4; + ES;(t/R) * 1 = 0,

(3:54) >t m TR

o~ 2~ V3K, 1 a(2)) 2

where, for I # 0,

-1 1
=T (@R
(3.56) Px(z) = hE.-_o m(&z)k' Ql(z) = 2 m(zz)k’

and So =0.

We immediately observe that S;(z) is rational and, therefore, (3.54)
may be localized in time. (The fact that the exact boundary condition
can be localized in time for a finite number of spherical harmonics is also
noted by Grote and Keller [10].) What has not been accomplished so
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far is to derive a convenient factorization or expansion of Pi(z)/Qi(z), to
facilitate numerical implementation. However, even if this must be done
numerically, the availability of simple, exact conditions makes the use of a
spherical boundary very attractive.

We note that an important advantage of rectangular boundaries is
the possibility of adjusting the aspect ratio of the domain. To do this
with a smooth boundary, while maintaining a natural, separable coordinate
system, one might need elliptical and spheroidal coordinates. This suggests
our final problem.

Problem E: Characterize and approximate the exact boundary condition
for the wave equation at elliptical and spheroidal boundaries.
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A. Derivation of Equation (2.4). Our goal is to compute a useful
representation of the inverse Laplace transform of:
(A.1) K(s)= (2 + ) A
Although the inverse is available in standard tables, its importance to our
work suggests the inclusion of a direct verification.

Following the ideas given in [5, Ch. 38], we will derive a simple differ-
ential equation satisfied by K(t). We first note that K satisfies a first order
differential equation with quadratic coefficients:

(A-2) (s +1) % =sk 1.
Recall that:
df —— - -l —
(A.3) - = i), #f- 3 B0+ E ot = fFlo)(t).
k=0

Therefore, (A.2) is equivalent to:

d2 EE - +
(A.4) (K + 7+ = 1-2K(0%).

That is, K(t) satisfies the differential equation:

#K K
(A.5) tF+3E+t’C=MK—O,

subject to the initial condition,

(A.6) K(0) =

| =

in addition to a growth condition at infinity.
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We now verify that:

(A.7) K(t)= %/1 V1 — w2cos wtdw,

solves this problem. That the initial condition is satisfied may be checked
directly. Applying the differential operator we obtain:

1 1
MK = / (l—wz)a/ztcoswtdw—3/ V1 - w?wsin widw
-1 -1
1 1
(A.8) = / (1 — w?)*/?t cos wtdw + / }1_‘11;(1 - w?)3/3 sinwtdw
-1 -1

= 0.

Finally, we recall the identity,
: !
(A.9) Ji(t) = ;—/ V1 — w? cos widw,
-1

which may be found, e.g., in {1).
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